Study on Protection Mechanism of 30CrMnMo-UHMWPE Composite Armor

نویسندگان

  • Yu Zhou
  • Guoju Li
  • Qunbo Fan
  • Yangwei Wang
  • Haiyang Zheng
  • Lin Tan
  • Xuan Xu
چکیده

The penetration of a 30CrMnMo ultra-high molecular weight polyethylene armor by a high-speed fragment was investigated via experiments and simulations. Analysis of the projectile revealed that the nose (of the projectile) is in the non-equilibrium state at the initial stage of penetration, and the low-speed regions undergo plastic deformation. Subsequently, the nose-tail velocities of the projectile were virtually identical and fluctuated together. In addition, the effective combination of the steel plate and polyethylene (PE) laminate resulted in energy absorption by the PE just before the projectile nose impacts the laminate. This early absorption plays a positive role in the ballistic performance of the composite armor. Further analysis of the internal energy and mass loss revealed that the PE laminate absorbs energy via the continuous and stable failure of PE fibers during the initial stages of penetration, and absorbs energy via deformation until complete penetration occurs. The energy absorbed by the laminate accounts for 68% of the total energy absorption, indicating that the laminate plays a major role in energy absorption during the penetration process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of behind the armor ballistic trauma.

The impact response of body armor composed of a ceramic plate with an ultrahigh molecular weight polyethylene (UHMWPE) fiber-reinforced composite and layers of UHMWPE fibers shielding a block of ballistic gelatin has been experimentally and numerically analyzed. It is a surrogate model for studying injuries to human torso caused by a bullet striking body protection armor placed on a person. Pho...

متن کامل

Performance Metrics for Composite Integral Armor

Future combat systems necessarily focus on lightweight, highly mobile and transportable armored vehicles. Lightweight composite integral armor systems are being developed to meet these needs. The goal of this paper is to centrally document he myriad design requirements for composite integral armors that serve multZunctiona1 roles including ballistic, structural, shock, electromagnetic, and fire...

متن کامل

Long Term Stability and Implications for Performance of High Strength Fibers Used in Body Armor

Title of dissertation: LONG TERM STABILITY AND IMPLICATIONS FOR PERFORMANCE OF HIGH STRENGTH FIBERS USED IN BODY ARMOR Amanda L. Forster, Doctor of Philosophy, 2012 Dissertation directed by: Professor Mohamad Al-Sheikhly Department of Materials Science and Engineering The objective of this work is to examine the relationship between structure (both molecular and morphological structure) and pro...

متن کامل

Adsorption Mechanism of Lead on Wood/Nano-Manganese Oxide Composite

Discharge of untreated industrial wastewater containing heavy metals such as Pb2+ is hazardous to the environment due to their high toxicity. This study reports on the adsorption, desorption, and kinetic study on Pb2+ removal from aqueous solutions using wood/Nano-manganese oxide composite (WB-NMO). The optimum pH, contact time and temperature for adsorption were found...

متن کامل

In-Situ Polymerization of UHMWPE Using Bi-Supported Ziegler-Natta Catalyst of MoS2 Oxide/MgCl2 (Ethoxide Type)/TiCl4/TiBA: Study of Thermo-Mechanical Properties of System

The use of UHMWPE has attracted the attention of many researchers and industries. The aim of the present work is to fabricate UHMWPE/MoS2-Oxide nano-composites using in-situ polymerization. For this purpose, modified molybdenum disulfide was used. In order to perform the polymerization, a Ziegler-Natta catalytic system, with MoS2-Oxide and magnesium Ethoxide as support, was used. In order to fa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017